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6 ADDITIONAL SUPPORTING INFORMATION

6.1 NK dependence on the frequency spectra

Consider a time-domain cross-correlation with zero mean associ-
ated with two filtered noise sequences in the frequency bandwidth
(FBW) [fmin, fmax]. We define φ(t) as the time-domain energy
density of the cross-correlation. Over the elementary time length
L0 (eq. 3), the time-domain energy variance v2 is given by

v2 =

∫ L0

0

t · φ(t)dt =
1

2
L2

0 · 〈φ〉, (11)

where 〈φ〉 is the mean energy density over L0. The energy density
φ(t) is equivalent to mi

k(t, τ) in eq. 7, for a given pair (i, k). Eq.
11 shows that the mean time-domain energy density 〈φ〉 is propor-
tional to the ratio v2/L0

2, which is equivalent to the standardized
time-domain variance σik

2. That is, σik
2 in eq. 9 is proportional to

〈mi
k(t, τ)〉. Then, the ratio of standardized input variances σ2

B/σ
2
A,

respectively associated to the cross-correlations B and A, is given
by

σ2
B

σ2
A

=
〈φB〉
〈φA〉

=
v2B/L

B
0

2

v2A/L
A
0

2
. (12)

We show below that the ratio σ2
B/σ

2
A can be calculated in the

frequency domain under the assumption that both sequences are
white. The frequency-domain energy density of a white sequence
is E(f) = 1. So, in the FBW [fmin, fmax], the frequency-domain
energy variance V 2 is given by

V 2 =

∫ fmax

fmin

f · E(f)dt =
1

2
(f2
max − f2

min). (13)

For the two cross-correlations A and B, we obtain using eqs 3 and
13:

V 2
B

V 2
A

=
(fBmax)2 − (fBmin)2

(fAmax)2 − (fAmin)2
=
LA0

2

LB0
2
· (n2

B − 1)

(n2
A − 1)

, (14)

where nA = fAmax/f
A
min and nB = fBmax/f

B
min.

For each cross-correlation, the time- and frequency-domain
variances v2 and V 2 given in eqs 11 and 13, respectively, are tied
through the Gabor (or Heisenberg) uncertainty relation v2V 2 ≥
1/(4π), so we obtain

v2A
v2B

=
V 2
B

V 2
A

. (15)

Using eqs 12, 14, and 15, we obtain

σ2
B

σ2
A

=
(n2
A − 1)

(n2
B − 1)

. (16)

Now, under the same statistical confidence level ε2 (eq. 9),
we can relate the associated products NAKA and NBKB , for the
respective sequences A and B, with their relative FBWs (eq. 16) to
obtain

NBKB

NAKA
=

(n2
A − 1)

(n2
B − 1)

. (17)

Eq. 17 is an exact expression. A proxy for fast track calculation is

NBKB

NAKA
=

[
1 + 1/n2

B − 1/n2
A +O(n−4)

]
(nB/nA)2

≈ (nA/nB)2, (18)

which is valid when 1/n2
A and 1/n2

B are both smaller than 1 or
when 1/n2

A ≈ 1/n2
B .

Table 1. Predicted and observedK-ratios (definition in text) associated with
the tolerance thresholds ε = 0.01 for synthetic data (Fig. 1e) and ε = 0.02
for field data (Figs 2d, e). Double horizontal lines separate synthetic (above)
from field data (below). For field data, P and R stand for with and without
preprocessing (1-bit + whitening), respectively. For R data, predicted values
were estimated using the Additional Supporting Information.

FBW Predicted Observed Predicted /
(Hz) (Eq. 10) Observed

[0.2, 0.4] vs. [0.2, 1.0] 0.35 33/72 = 0.46 0.76
[0.2, 0.4] vs. [0.2, 0.8] 0.46 39/72 = 0.55 0.84
[0.2, 0.6] vs. [0.2, 1.0] 0.58 33/52 = 0.63 0.92
[0.2, 0.4] vs. [0.2, 0.6] 0.61 52/71 = 0.72 0.85
[0.2, 0.6] vs. [0.2, 0.8] 0.73 39/52 = 0.75 0.97
[0.2, 0.8] vs. [0.2, 1.0] 0.79 33/39 = 0.85 0.93

[0.05, 0.4] vs. [0.10, 0.2] R 2.01 49/22 = 2.23 0.90
[0.05, 0.4] vs. [0.05, 0.1] R 2.34 40/22 = 1.82 1.29
[0.05, 0.1] vs. [0.10, 0.2] R 1.17 49/40 = 1.23 0.95
[0.05, 0.4] vs. [0.10, 0.2] P 4.58 34/12 = 2.83 1.62
[0.05, 0.4] vs. [0.05, 0.1] P 4.58 34/12 = 2.83 1.62
[0.05, 0.1] vs. [0.10, 0.2] P 1.00 34/34 = 1.00 1.00

6.2 How to adjust NK values for non-white noise

Consider two filtered non-white noise sequences and the problem
of adjusting correlation window length and number of stacks when
changing from one FBW to another in correlation studies. To give
an approximate solution to this problem, below we first define the
equivalent white spectrum for a given filtered non-white noise, and
then, using the two equivalent spectra, we apply eq. 10.

LetE(f) be the energy density spectrum of a non-white noise
filtered in the FBW [fmin, fmax]. We define its equivalent white
noise energy density spectrum Eeq(f) as the box-shaped distribu-
tion reproducing the first two moments ofE(f), with the additional
constraint of amplitude equal to 1. Then the parameters equivalent
FBW (beq) and central frequency (fC ) of Eeq(f) are given by:

beq · 1 = γ0 =

∫ fmax

fmin

E(f)df , (19)

fC = (1/γ0)

∫ fmax

fmin

f E(f)df . (20)

Eeq(f) extends over the equivalent FBW [fC − beq/2, fC +
beq/2], which might be different from [fmin, fmax]. Thus each
equivalent ratio n to be used in eq. 10 (or its approximation eq.
18) is given by

n =
fC + beq/2

fC − beq/2
. (21)

6.3 Predicted and observed K-ratios

Along the line N=K (Figs 1 and 2) we can use the K-ratio
KB/KA, associated to the respective values of K where the de-
cay curves cross the same threshold ε, to measure the relative de-
cay rate. Table 1 shows that reasonable ratios among the predicted
(eq. 10) and observed (Figs 1e, 2d, and 2e) K-ratios are obtained
in most cases both for synthetic and field data.

The largest differences between predicted and observed K-
ratios are obtained for the field data (with and without preprocess-
ing) when comparing very different relative FBWs (that is, when
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Noise cross-term cancellation

(n2
B − 1)/(n2

A − 1) is large). In this case, one possibility is that
the threshold ε = 0.02 is attained at values of N=K smaller than
our prediction for the relatively narrow FBW, or when the opposite
happens for the relatively wide FBW. We did not further investi-
gate the reasons why predicted and observed K-ratios depart from
1, both for synthetic and field data. Nonetheless, a detailed study
should analyze at least two causes: 1) failures in approximating a
non-white noise spectrum by its equivalent white-noise spectrum
and 2) whether spectral leakage associated with bandpass filtering
can bias the results.
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