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ABSTRACT

One of the most critical decisions in the design of a local-
slant-stack transform (LSST) is the selection of its aperture,
or more precisely, the selection of the appropriate number of
traces and their weighting coefficients for each slant stack.
The challenge is to achieve a good compromise between the
slowness and the spatial resolution. Conventionally, the window
size is chosen in a more intuitive manner by visual inspection
and some limited tests. We analyzed the LSST to establish rig-
orous criteria for the window selection to achieve the optimum
slowness and spatial resolution in the transformed domain for a
given data set. For this purpose, we estimated the slowness re-
solution in the LSST domain as a function of the spatial-window

bandwidth and of the spectral characteristics of the waves. For a
wave with a given bandpass spectrum, the slowness resolution,
the stopband attenuation, and the wavefront-tracking capability
are determined by the spatial window. For narrowband signals,
the spatial window must be larger than the stopband bandwidth
divided by the desired slowness resolution and the central fre-
quency of the band. For wideband signals, the window length is
determined by the lowest frequency components. Much longer
windows can only be used when the slowness and the amplitude
variations of the wavefront trajectories are small. We validated
our approach with a synthetic example and applied it to a wide-
angle seismic profile to show the filter performance on real data
in which the LSST-window length is determined in an auto-
matic, data-adaptive manner.

INTRODUCTION

Several seismic-processing techniques, such as noise filtering
and velocity analysis, rely on the fact that seismic measurements
are laterally coherent. Interfering, nonstationary noise will hinder
these algorithms. Two commonly used features along seismic pro-
files are: the similarity along signal trajectories, which correspond
to wavefronts, and the wave-propagation direction given by the ve-
locity/slowness vector at the receiver. When trace density is high,
we employ this high similarity/coherence to design filters depend-
ing on apparent slowness — inplane component of the slowness
vector — to increase the signal-to-noise (S/N) ratio.
Mainstream filters for highly coherent signals are based on plane-

wave decomposition techniques. These techniques can be classified
into several broad categories: (1) pie-slice f-k (frequency-wave-
number) filters (see, e.g., Embree et al., 1963; Yilmaz and Doherty,
2001); (2) filters in the τ-p (intercept-time, slope, or slowness)

domain, also called linear Radon or slant-stack domains (Stoffa
et al., 1981; Durrani and Bisset, 1984; Turner, 1990; Deans,
1993; Yilmaz and Doherty, 2001; Wilson and Guitton, 2007);
(3) filters in the slowness-frequency (p-f) domain (Forbriger,
2003; Dev and McMechan, 2009); (4) filters based on eigenvalue
decompositions (see, e.g., Vrabie et al., 2004, 2006); (5) filters in
the frequency-offset (f-x) domain (see, e.g., Bekara and van der
Baan, 2009); and (6), time-space prediction-error filtering (see,
e.g., Guitton, 2005). Note the close relation among the first filters;
the f-k transform and the slant-stack transform (SST) are related by
the projection-slice theorem (e.g., Durrani and Bisset, 1984); and
the p-f transform and the SST, by the Fourier transform.
The slowness variations of the signals strongly constrain the level

of sparsity that plane-wave-decomposition techniques can achieve.
To overcome this limitation, these techniques adopt the following
two main approaches: (1) They are generalized to represent seismic
signals in a more compact way when signal trajectories can be
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modeled, or (2) they are adapted to be used in a local way. In surface
seismics, the hyperbolic Radon transform is used in common-mid-
point (CMP) gathers for multiple attenuation and noise removal
(e.g., Yilmaz and Doherty, 2001). Trad et al. (2002, 2003) impose
sparsity constraints to attain high-resolution Radon transforms for
trace interpolation/regularization. Mann et al. (1999) (see also Jäger
et al., 2001; Hertweck et al., 2007) propose the common-reflection-
surface (CRS) stack, as a local-second-order-approximation alterna-
tive, when CMP is not powerful enough or when its hyperbolic
assumption is no longer valid. The LSST (Ottolini, 1983; Harlan
et al., 1984; Bohlen et al., 2004; Shlivinski et al., 2005) is a local
adaptation of the SST. This transform represents the data in the
time-space-slowness domain, applying one low-aperture SST cen-
tered on each trace. As a result, the spatial resolution increases at the
cost of “slowness resolution,” with respect to the full-aperture SST.
Note the term slowness resolution stands for “smallest interval mea-
surable along the slowness axis in the LSST domain” and has little
in common with the concept of slowness resolution of a velocity
model in seismic migration or seismic tomography.
Widespread LSST applications are local-adaptive filters, e.g., the

spatial-averaging filters on degree-of-polarization measures
(Schimmel and Gallart, 2003, 2004), or the adaptive f-k filters of
Duncan and Beresford (1994); and instantaneous slowness
measures (Milkereit, 1987; van der Baan and Paul, 2000; Hu and
Stoffa, 2009). Hence, the LSST is found in leading-edge algorithms,
such as CRS, to estimate the first-order-approximation parameters
or stereotomography (Billette and Lambaré, 1998; Billette et al.,
2003; Lambaré, 2008) to measure local slope in the event picking.
A key element of these applications is the measurement of the

local slope of the signal trajectory or instantaneous slowness. Fomel
(2002, 2007a, b) and Schleicher et al. (2009) define slope-extraction
techniques based on the derivative of the wavefield. In the LSST
domain, this measurement is determined as a local maximum of
the amplitude, envelope or coherence along the slowness axis.
Our goal is to estimate or to remove coherent signals by locally

decomposing the seismic profiles in slowness using the LSST
optimally. The main issues to solve in the design of a filter based
on the LSST are the determination of the optimal aperture to locally
distinguish the signals in the transformed domain and the choice of
an appropriate synthesis operation of the filtered signals to the time-
space domain. We use the good energy concentration of the LSST
on seismic events to reduce the complexity of the synthesis opera-
tion. Regarding the first issue, the LSST window determines the
aperture. The space-slowness location of a seismic signal in the
LSST domain cannot be simultaneously known with an arbitrary
high precision; the choice of the window entails a tradeoff between
both. The spatial and the slowness resolution compromise set a
minimum limit on the LSSTwindow, whereas the coherency length
(distance where signals remain similar) and the slope variations set a
maximum. The coherency length generally decreases with increas-
ing frequency due to subsurface structure complexities; in light of
this dependency, Schimmel and Gallart (2007) adapt the window
length with frequency.
The main task, when an LSST-based filter is employed, is to find

a good tradeoff among key parameters, such as the slowness reso-
lution, the interference and noise rejections, and the tracking cap-
ability of slowness-varying events. Conventionally, the optimum
window is intuitively designed by visual inspection of some limited
tests. To make this task easier and objective, we establish rigorous

design criteria by analyzing the influence of the spatial-window
bandwidth and the signal spectra on the slowness resolution of
the LSST decomposition. As a result, we show that the optimum
window can be designed beforehand, given the minimum global
or local slowness resolution required to filter a seismic section.
This work is organized as follows. We first introduce the LSST

and the adaptive filters based on this transform. We then focus on
the slowness resolution estimation, stressing its main dependencies,
and the synthesis of rigorous criteria on the LSST-window design.
To conclude, we apply the new tools on synthetic and real data
profiles and we discuss the main results.

METHODOLOGY

Local-slant-stack transform

The LSST of a seismic profile uðt; xÞ with a weighting function
gðxÞ, also called spatial-window, is

vsðτ; xcÞ ¼
Z þ∞

−∞
gðx − xcÞuðpsðx − xcÞ þ τ; xÞdx; (1)

where τ denotes the delay, xc the offset in the transformed domain,
and ps the slowness, with s its slowness index. Note that gðxÞ is
smooth, has unit area, and is positive around zero; and that τ
and xc are continuous whereas ps is discrete.
In the discrete domain, the LSST of a seismic profile u with a

nonuniform separation between traces can be written as locally
weighted sums of L neighboring traces, L being odd, along a
set of signal wavefront trajectories of slowness ps, with s the slow-
ness index

vs;m½n� ¼
XðL−1Þ∕2

i¼−ðL−1Þ∕2
gm½i�umþiðnT þ ðdmþi − dmÞpsÞ; (2)

where each element vs;m½n� of the LSST decomposition is an esti-
mation of the contribution of the signal with slowness ps to the
sample um½n�, with n and m being the sample and trace indices,
respectively. The time-space trajectory of the wavefront with a
slowness ps is t ¼ nT þ ðdmþi − dmÞps, where T is the sampling
rate and dmþi − dm the distance between the traces um and umþi.
The weight assigned to each trace, gm½i�may depend on the position
of the central trace um, due to the usually nonuniform separation
between traces.
Because the wavefront trajectories will not intersect the signal

exactly at the time samples in equation 2, a polynomial interpolation
is employed to find the values at arbitrary arrival times (Press et al.,
2007). Additionally, note that the LSST assumes that seismic events
vary slowly enough in slowness, amplitude, and shape to be locally
approximated by plane waves.

Filtering and synthesis

Once the LSST, equation 2, has decomposed a seismic section in
the time-space-slowness domain, we have to select and process the
signals of interest and, finally, apply an inverse transform to synthe-
size a filtered seismic section in the time-space domain. Two oppo-
site strategies can be followed in this inverse operation: synthesize
the filtered profile estimating the signals to preserve, or estimate the
signals to remove and subtract them from the original profile in the
time-space domain.
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Similar to the discrete inverse Radon transform, both strategies
entail the solution of a large, sparse, linear system of equations.
These operations are normally costly and can be unstable due to
errors introduced by the use of finite-precision, real numbers. To
minimize these problems, several inverse algorithms have been
developed (see, e.g., Toft [1996] or Wilson and Guitton [2007]
and the reference therein for the Radon transform, and Takiguchi
[1995] or Shlivinski and Heyman [2009]) for the windowed ver-
sion). However, these techniques do not consider that most of
the energy of seismic signals is usually concentrated in a narrow
slowness range. In this specific case, when the main signals are
clearly separated, the inverse operation can be approximated by
a sum of a small set of slowness components (Stoffa et al.,
1981; Wenzel et al., 1982; van der Baan and Paul, 2000), or even
by a single one (see, e.g., Schimmel and Gallart, 2003, 2004).
Although full inverses are more accurate, a “lazy” inverse based
on a single slowness component makes the inverse operation trivial,
and it suffices for the applications of removing high-energy inter-
fering waves and estimating low-energy waves, on which we focus.
We determine the instantaneous slowness of seismic waves in the

LSST domain as the slowness value with a maximum degree of
coherence (see, e.g., Milkereit, 1987; Duncan and Beresford,
1994). The most commonly used coherence estimators are the sem-
blance and the normalized crosscorrelation (Neidell and Taner,
1971; Taner et al., 1979); but many other options based on eigen-
decompositions of the covariance matrix (Key and Smithson, 1990),
phase stacks (Schimmel and Paulssen, 1997), or even 3D extensions
like the coherence cube (Marfurt et al., 1998, 1999) are available. In
this work, we opt for the phase-stack coherence estimator by Schim-
mel and Paulssen (1997) due to its noise robustness and amplitude
unbiasedness. Using this criterion, the instantaneous slowness
estimator can be written as

qm½n� ¼ arg max
s

1

L

����
XðL−1Þ∕2

i¼−ðL−1Þ∕2

uamþi;s½n�
juamþi;s½n�j

���� (3)

being uamþi;s½n� ¼ uamþiðnT þ ðdmþi − dmÞpsÞ, where uamðtÞ de-
notes the analytic representation of umðtÞ.
Finally, we can design LSST-based adaptive filters to isolate or to

attenuate seismic signals, selecting the instantaneous slowness com-
ponents measured by the previous estimators:

ym½n� ¼ vs;m½n�
����
ps¼qm½n�

; (4)

where qm½n� denotes the instantaneous slowness and vs;m½n� is the
seismic section decomposed in slowness.

Slowness resolution

Real seismic-signal trajectories do not have a constant slope.
However, we can define the fundamental signal as locally coherent
along a line of slope q, uðt; xÞ ¼ uðt − qxÞ, thanks to the small
slope variations of seismic signals. This approximation is valid
while the slope variation is mild, as discussed in the Optimum
window selection section. Introducing this constraint into the LSST
integral, equation 1, we obtain

vsðτ; xcÞ ¼
Z þ∞

−∞
gðx − xcÞuðτ þ psðx − xcÞ − qxÞdx: (5)

Applying the change of variables t1 ¼ τ þ psðx − xcÞ − qx and
dt1 ¼ jq − psjdx, we write

vsðτ; xcÞ ¼
Z þ∞

−∞

uðt1Þ
jq − psj

g

�
τ − t1 − qxc

q − ps

�
dt1; (6)

which can be expressed as a convolution over t1

vsðτ; xcÞ ¼ u⋆
1

jq − psj
g

�
τ − qxc
q − ps

�
: (7)

Equation 6, which is similar to a continuous wavelet transform
(Daubechies, 1992; Mallat, 2009), can be seen as the inner product
between uðtÞ and a family of functions generated from gðtÞ with
translation and scaling operations. Despite the family of functions
gðt∕aÞ∕jaj being low pass and unit mean instead of having zero
mean and unit energy as in wavelet theory, a fruitfull relationship
can be established between the LSST and a generalization of the
wavelet transform (Kaiser and Streater, 1992).
Defining the LSST family of functions hsðtÞ as

hsðtÞ ¼
1

jq − psj
g

�
t − qxc
q − ps

�
; (8)

for ps ≠ q, its Fourier transform is

ĥsðωÞ ¼ ĝððq − psÞωÞe−jqxcω: (9)

Note that ω denotes the temporal frequency and k ¼ ðq − psÞω is
the spatial frequency. In the particular case of ps ¼ q, hsðtÞ is

lim
ps→q

hsðtÞ ¼ lim
ps→q

1

jq − psj
g

�
t − qxc
q − ps

�
¼ δðt − qxcÞ (10)

in the sense of distributions, and its Fourier transform becomes

ĥsðωÞ
����
ps¼q

¼ e−jqxcω: (11)

Hence, for ps ¼ q, hsðtÞ is an all-pass filter with a unit gain
v̂sðω; xcÞjps¼q ¼ ûðωÞe−jqxcω, or equivalently, vsðt; xcÞjps¼q ¼
uðt − qxcÞ.
By applying the scaling property of the Fourier transform,

hðtÞ ¼ gðt∕aÞ ↔ ĥðωÞ ¼ jajĝðaωÞ, to the family of functions
ĥsðωÞ, we notice that the ĥsðωÞ bandwidth is inversely proportional
to the q − ps factor and approaches infinity when ps approaches q,
Δω ¼ Δk∕jq − psj, beingΔk the bandwidth of ĝðkÞ. In other terms,
when ps ≠ q, hsðtÞ becomes a low-pass filter whose bandwidth re-
duces as jq − psj grows. Therefore, the high-frequency components
are progressively attenuated as the ps slowness moves away from
the q slowness of the plane-wave uðt − qxÞ; until, if ûðωÞ has a
bandpass-like spectrum, the whole wave is almost completely re-
moved. In conclusion, the characteristics of the spatial window
and the wavefront spectrum fully determine the slowness resolution
of the LSST and the coherent-signal attenuation.
Several criteria to define the normalized bandwidth exist, e.g., the

equivalent noise bandwidth, ΔkEN, which represents the bandwidth
that an ideal filter (infinite rejection in the stopband) would have to
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accumulate the same noise power. The minimum rejection to
coherent signals or minimum stopband attenuation is defined in
the frequency domain as the maximum peak level of the side lobes
(stopband) with respect to the main lobe (passband). Measured in
decibels, it reads

A ¼ 10 log10
jĝðkslÞj2
jĝð0Þj2 ; (12)

where ksl is the peak spatial frequency of the side lobe with the
highest amplitude. Table 1 summarizes the stopband attenuation
and three normalized bandwidth criteria for several discrete win-
dows. For a detailed analysis of these and other widely used win-
dows, see, e.g., Harris (1978) and Oppenheim and Schafer (2009).
In the case of narrowband signals (bandwidth Δω much lower

than its central frequency ω0), the response of the LSST at the cen-
tral frequency ω0 is

ĥsðω0Þ ¼ ĝððq − psÞω0Þe−jqxcω0 ; (13)

hence the slowness resolution at ω0 is

Δp ¼ Δk∕ω0; (14)

where Δk is the spatial-frequency bandwidth of ĝðkÞ. The location
of the side lobes in slowness depends on the inverse of ω0,
psl ¼ q� ksl∕ω0, whereas the minimum slowness rejection is
independent of ω0 and equals the stopband attenuation.
For example, the slowness resolution of an LSST that uses a rec-

tangular window of length L in the narrowband approximation is

Δp ¼ Δk
ω0

¼ 2πΔkEN
Lω0

¼ 2π

Lω0

¼ 1

Lf0
; (15)

where f0 is the central frequency of the signal in Hz, and Δk is the
spatial-window bandwidth in 1∕m. In this case, we define Δk using
the equivalent noise bandwidth ΔkEN criterion, Table 1. The mini-
mum slowness rejection is A ¼ −13 dB.

Optimum window selection

The main features to set in an LSST are the slowness resolution,
the stopband attenuation, and the wavefront-tracking capability. As
shown in the slowness resolution section, given a wave with a pass-
band spectrum, all these features are determined by the spatial
window.

Window length

From the viewpoint of maximizing the wavefront-tracking cap-
ability, the optimal window is the shortest one that fulfills the mini-
mum slowness resolution to attain the maximum resolution in the
offset axis. However, note that as the window gets shorter, the sen-
sitivity to noise increases.
In narrowband signals, the relationship between slowness resolu-

tion and window bandwidth, equation 14, determines the minimum
length of the LSST window to attain a minimum slowness resolu-
tion, Δpmin ≥ Δk∕2πf0. As the window bandwidth is Δk ¼
2πΔkN∕L, being ΔkN a normalized bandwidth, the window length
must be

L ≥
ΔkN

Δpminf0
(16)

to fulfill the minimum slowness resolution. The most rigorous de-
finition of the ΔkN bandwidth establishes the stopband attenuation
at Δpmin from the slowness of the signal to estimate. When defined,
we approximate this bandwidth by the bandwidth between zeros.
In wideband signals, i.e., when Δω ≫ ω0, the lowest frequency

components determine the window length due to the inversely pro-
portional relationship between frequency and window length,

L ≥
ΔkN

Δpminfmin

; (17)

where fmin denotes the minimum meaningful frequency.

Window function

The main criterion to choose the window function is the desired
minimum rejection. When we have to remove a large amplitude
wave that masks a weaker one, beside having enough resolution
in slowness to distinguish them, the stopband attenuation should
be much greater than the ratio of their amplitudes, otherwise, the
weaker wave can be completely masked or distorted by the side
lobes of the stronger one. Note that attenuations that are too high
must be avoided due to the inherent increase in bandwidth (see, e.g.,
Table 1) which implies longer windows (equation 16) and conse-
quently a decreased wavefront-tracking capability.

Optimum window for events of moderately varying slowness

When an LSST-based filter is used to remove coherent signals, it
is important to remember the assumption of mild slowness varia-
tions along the offset implicitly made with the LSST. As long as

Table 1. Normalized bandwidths in bins (frequency unit of the discrete Fourier transform) and rejection of several windows.
Δk−3 dB is the −3 dB bandwidth, ΔkEN the equivalent noise bandwidth, Δkz the bandwidth between zeros and A the stopband
attenuation.

Name g½n� n ¼ −N∕2 : : : N∕2 Δk−3 dB (bins) ΔkEN (bins) Δkz (bins) A (db)

Rectangular 1 0.89 1.00 2 −13
(Co)sine cosðπnN Þ 1.20 1.23 3 −23
Triangle 1 − j 2nN j 1.28 1.33 4 −27
Hamming 0.54þ 0.46 cosð2πnN Þ 1.30 1.36 4 −43
Gaussian e−18ðn∕NÞ2 1.55 1.64 ∞ −55
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this key assumption is valid for the window length used, the results
will be close to the expected ones.
The amplitude envelope of a wave changes with the offset

much more slowly than does its phase; as a result, the error in

the estimation of signals of moderately varying slowness is mostly
concentrated in their phases. When the phase shifts are in the same
direction at opposite sides of the window with respect to its
center, such as around the zero offset in a reflection event, the

a) b)

Figure 1. Synthetic seismic data set composed of three seismic waves of variable slowness and Gaussian noise. (a) Original section with the
work area delimited by black lines. (b) LSST-filtered section.

a) b)

c) d)

e) f)

Figure 2. Filtering algorithm details. Degree-of-coherence sections (a) at 40 m and (c) at 60 m, where black dots indicate slowness maxima and
solid lines the working domain. LSST-modulus sections (b) at 40 m and (d) at 60 m. (e) Estimated instantaneous slowness. (f) Modulus of the
estimated signal.
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instantaneous slowness measure remains low biased, but the phase
of the signal estimation does not. On the contrary, when the shifts
are in opposite directions, the signal estimation has a low-phase bias
whereas the slowness measure does not.
To minimize this effect, the maximum weight has to be given to

the traces close to the window center; as a consequence, the most
appropriate function is the rectangular window, thanks to its high
processing gain. When the slowness variations are severe and this
minimization is insufficient, then one can use alternative approaches
based on second-order approximations, such as CRS-based filters.

EXAMPLES AND DISCUSSION

To evaluate the design rules for an optimum LSST-window selec-
tion shown in the previous section, we apply an LSST-based filter to
attenuate high-energy waves using synthetic data first and then real
data. To clearly illustrate the compromises to solve, we use a unique
spatial window along the synthetic profile; however, we remove this
constraint in real data to unlock the full potential of the LSST.

Three seismic waves of variable slowness

The synthetic seismic profile shown in Figure 1a contains three
unit-amplitude slowness-varying events contaminated by Gaussian
additive noise in which the sampling rate is normalized to
1 sample∕s and the trace separation to 1 m. The events have a
modulated Gaussian waveform with a normalized central frequency
of f0 ¼ 1∕9 Hz (9 samples∕cycle), and the noise has a variance of
0.05 and the same amplitude spectrum as the signals. The slowness
of signals 1 and 2 (labeled in Figure 1) increases progressively from

zero at the origin to 3 and 1 s∕m, respectively, at 100 m. The slow-
ness range of signal 3 includes the range of signals 1 and 2. Note
that the first two signals intersect in the central part of the section,
and that their slowness ranges overlap. Although signal 2 is inter-
fering in slowness or time with the other signals, the LSST-based
filter successfully removes it, see Figure 1b. These results cannot be
obtained with a filter in the τ-p domain because of the high slow-
ness variations along the offset, nor with a pie-slice f-k filter, due to
the overlap of the slowness ranges.
The signals overlap with the minimal slowness difference of

1.1 s∕m just before the intersection between signals 1 and 2, at ap-
proximately 30 m. This implies a Δpmin ≥ 2.2 s∕m, which, accord-
ing to equation 16, leads to an LSST-window length of
L ≥ 4.09ΔkN m to have enough slowness resolution to distinguish
both signals. As shown in the previous section, the window band-
width is determined by the desired minimum rejection and the em-
ployed definition criterion. Assuming that we require a distortion
lower than 10% on signal amplitude, a sine window with a stopband
attenuation of −23 dB is admissible. Consequently, approximating
the stopband bandwidth by the bandwidth between zeros,
ΔkN ≃ Δkz ¼ 3, the minimum window length is 13 m.
Figure 2b and 2d show time-slowness panels of the modulus of

the LSST at 40 and 60 m. In both, the three signals are clearly
separated and, in particular, the slowness resolution is sufficient
to distinguish signal 1 from signal 2. The number of slowness com-
ponents depends on the highest resolution achieved so that the in-
troduced quantization error is negligible. A Lagrange polynomial
interpolation of order five is used to interpolate all the required
points at each trace.

a) b)

Figure 3. Attenuation of the third wave of Figure 1. (a) Estimated signal. (b) Filtered record section.

a) b)

Figure 4. Mean-amplitude error in the estimation of the third signal of Figure 3 with respect to the original but without noise. (a) Full section.
(b) Comparison between the original noiseless signal and the estimated one at the trace located at 12 m.
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The instantaneous slowness is measured using
a phase-stack coherence estimator with a rectan-
gular window of 17 m, equation 3. Figure 2a and
2c display time-slowness coherence panels at 40
and 60 m, together with the slowness maxima
(black points) in the working domain (solid
lines). The window length employed in the
degree-of-coherence estimator is usually longer
than the one used in the LSST, thanks to the
low time variation of the instantaneous slowness
of the signal. The resulting slowness resolution
increase allows a better measure of the instanta-
neous slowness along offset than the local max-
ima of the LSST modulus, see Figure 2e, and as a
consequence, a more accurate location of the
signal in the LSST domain, see Figure 2f. For
this reason, we employ the slowness estimation
in the synthesis operation, equation 4.
Finally, we illustrate the limitation of the

LSST-based filters on the estimation of events of moderately vary-
ing slowness. The aim is now to attenuate signal 3 of Figure 1a that
has a maximum slowness variation along the offset axis of
0.2 s∕m2, twice the maximum of signal 2 and six times the max-
imum in the overlapping zone between signals 1 and 2. As the mini-
mum slowness resolution is not constrained, we use a rectangular
window of 7 m for the LSST and of 11 m for the instantaneous
slowness estimation.
Although the phase bias in the estimated and the filtered sections

shown in Figure 3 is too small to distinguish it, this error can be
clearly seen in Figure 4 where we show the mean error of different
noise realizations between the original and the estimated signals. As
discussed in the optimum window selection section, the phase bias
is higher at slowness variation maxima. In this example, the max-
imum error is approximately a quarter of the amplitude of the ori-
ginal signal.

Real data example: Attenuation of high-energy waves

The profile shown in Figure 5 is a zoom of a vertical-component
ocean bottom seismometer (OBS) record section used in the MAR-
CONI project (OBS 16, profile 13) to study the continental margin
at the transition of the Eurasian and Iberian plates in the Bay of
Biscay (Ruiz, 2007). The main targets are reflections and refractions
from the lower crust that are obscured at certain distances by the
arrival of strong direct waves (between sources and OBS) and
water-bottom multiples. The goal is to attenuate these high-energy
signals, which we refer to as water waves, to unravel the hidden
weak signals.
The highly coherent signals with high slope (low apparent velo-

city) in Figure 5 are the water waves generated by previous air-gun
shots. Waves reflected and refracted from discontinuities in the low-
er crust and upper-most mantle and their multiples are seen as hor-
izontal arrivals due to the reduction velocity of 8 km∕s applied to
the time axis. An LSST-based filter is applied to this data set to
attenuate the water waves while keeping the distortion of the other
waves, and particularly of the refracted waves, at the mini-
mum level.
The instantaneous slowness of the water waves and the refracted

waves clearly varies along the profile. Their slowness ranges extend
from 0.25 to 0.55 s∕km and from −0.14 to 0.07 s∕km, respectively.

Figure 5. Far-offset section of the vertical component (OBS 16, profile 3) of the project
MARCONI (Ruiz, 2007) with amplitude attenuation applied at each trace.

a)

b)

c)

Figure 6. Filtering algorithm details. (a) Slowness measures of the
water wave and (b) their degree of coherence using the phase-stack
estimator. (c) Optimum length of the LSST window in number of
traces (1 km ≃ 9 traces).
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The minimum difference along the whole profile between these
slowness bands is 0.18 s∕km, which implies a global Δpmin ≥
0.36 s∕km.
The high-amplitude difference between the waves of interest

and the interfering signals imposes a high stopband attenuation
constraint to keep refracted events undistorted and to limit arti-
facts. To fulfill this constraint, we choose a Hamming window
due to its high stopband attenuation (−43 dB) for its bandwidth;
which leads to a window length of L ≥ 0.8 s∕Δpmin ¼ 2.2 km,
equation 16, considering a minimum meaningful frequency of
5 Hz and approximating the stopband bandwidth by ΔkN ≃
Δkz ¼ 4. Furthermore, we select a phase-stack coherence estima-
tor with a Hamming window of 31 traces (3.5 km) to measure the
instantaneous slowness of the water waves and their degree of
coherence, see Figure 6.
The above global criterion provides good enough results; how-

ever, we can obtain better results with a negligible computational
cost increase by applying the minimum slowness resolution
criterion locally. In this example, we locally increase theΔpmin con-
straint, replacing the minimum slowness of the water waves by their
instantaneous estimation. Figure 6c shows the minimum window
length required after being rounded upward to the nearest odd in-
teger. The filtered profile is obtained by first measuring the single
LSST-instantaneous-slowness component of the water waves and
then subtracting the result from the original profile.
As Figure 7 shows, the LSST-based filter successfully removes

the water waves; this enables the analysis of refracted waves at off-
sets where they were totally masked. Along the first seconds of the

water waves at a given trace, where the signal is strong and the lat-
eral amplitude variations small, the disturbing waves are totally im-
perceptible. However, as time increases and amplitude decreases,
lateral amplitude variations grow and, as a consequence, a small
residual of the water waves can be noticed.
In fact, these variations introduce a constraint on the LSST

design. While the lateral amplitude variations increase, the spatial-
window length has to be reduced to improve the amplitude-tracking
capabilities of the LSST. We have used a rigorous bandwidth
definition to keep the artifacts at a minimum level, Figure 7. But,
less rigorous definitions, that lead to shorter windows and thus
better amplitude-tracking capabilities, could also be applied.
Figure 8 depicts the data in the f-k domain together with the re-

sults obtained using a pie-slice f-k filter with a stopband that ranges
from one to three samples/trace (0.22 to 0.67 s∕km), and the LSST-
based filter. Although the water waves seem to be successfully re-
moved in both cases, the results are totally different. The f-k filter
removes an important sector of the transformed domain, Figure 8b,
whereas the LSST filter keeps this sector with a far lower distortion,
Figure 8c. Although the noise characteristics of the original and the
LSST-filtered profiles are similar, compare Figures 5 and 7, most of
the high spatial-frequency components are removed in the f-k
filtered profile, Figure 9. Due to this spatial averaging, the strongest
refracted waves are better perceived, but it is far more difficult to
distinguish smaller signals from the noise.
It is well known that coherent artifacts may be generated when

too sharp f-k filters are used. This can lead to misinterpretations in a
complicated processing flow where other tools are applied to

a)

b)

Figure 7. (a) Estimation of the wave to remove and
(b) the LSST-filtered profile after the subtraction.

V38 Ventosa et al.

Downloaded 18 Feb 2012 to 161.116.100.92. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



remove incoherent waves or where certain attributes are extracted.
Thanks to the great flexibility that the local adaptation of
the LSST-based filters provides, we can reduce the risk of generat-
ing artifacts using softer and local adaptive filters. Note that the at-
tenuation of the incoherent noise that further obscures the reflected
and the refracted signals has not been the objective of this contribu-
tion. The objective has focused on estimating and subtracting the
coherent water waves with a minimum distortion; other processing
tools can now be applied to attenuate the incoherent noise, see, e.g.,
Schimmel and Gallart (2007) for a possible approach to further
clean this profile.

CONCLUSIONS

Plane-wave-decomposition techniques, such as pie-slice f-k
filters or filters in the τ-p domain, cannot be successfully applied
to filter signals with slowness variations due to their lack of spatial
resolution. This limitation is surpassed by employing filters based
on the LSST. The most critical decision to take in the design of
the LSST is the selection of the length and the shape of the spatial
window. The challenge is to achieve a compromise between the
slowness and the spatial resolutions. To solve this problem in a
rigorous way, we have estimated the slowness resolution in the
LSST domain as a function of the window bandwidth and signal
spectrum. This result has allowed us to select the window that
achieves the minimum slowness resolution required to estimate
the signal of interest, minimizing the interference caused by other
signals. Longer windows can only be used when the slowness and
the amplitude variations of the signal-wavefront trajectories are

small. However, if these variations are strong,
this window length guarantees that the signals
of interest are estimated with the minimum num-
ber of traces. This permits us to increase the
trackability of variable signals to a quantified op-
timum resolution. The criteria of minimum slow-
ness resolution in the LSST domain can be used
to select the optimum spatial-window automati-
cally, either globally or in a data-adaptive fash-
ion, depending on instantaneous slowness
measures. But, these criteria can also be useful
in key elements of modern tools, such as the es-
timation of the approximation parameters in CRS
or the local slope in stereotomography.
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a)

b)

c)

Figure 8. Representation in the f-k domain of (a) the original, (b)
the f-k filtered, and (c) the LSST-filtered profiles. It clearly illus-
trates the minimum distorsion of the LSST method with respect
to the f-k filter.

Figure 9. The f-k removed signals (a) and the filtered profile (b).
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