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Abstract

With respect to the first example in Schimmel (2001), Van Dongen et al. (2001) con-
clude from their Lomb-Scargle analysis that the noise I used ‘contains new period-
icities that are added to the signal (these periodicities by themselves resemble a
harmonic series of a 38-hour rhythm).’They infer that ‘the variance of the added noise
is about five times as large as the variance of the signal’ causing the detection of the
new significant periodicities in the noise prior to the 24-h bimodal rhythm. Moreover
the ‘example reflects a combination of an extremely non-sinusoidal signal with noise
that is not independent, which results in a time series that is difficult to analyze with
virtually any known method.’ In the following, I briefly examine these concerns to
avoid misunderstandings and to alert that with an inadequate use of the statistical sig-
nificance test, misleading conclusions can be obtained. Although this paper further
emphasizes difficulties in the detection with Lomb-Scargle periodograms, this should
not be used as de-motivation. As stated in Schimmel (2001) Lomb-Scargle is a pow-
erful technique but such as any other method one should be aware about its limita-
tions, and use additional tools to constrain the true data characteristics.
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Result with an Alternative Method

The noisy data from the first example in Schimmel (2001) have been analyzed with
the Phase Weighted Stack (PWS) technique (Schimmel & Paulssen, 1997; Hoenen 
et al., 2001). With PWS signals are detected by their waveform coherence and their
repeated occurrence in time series. In contrast to the Lomb-Scargle periodogram
(Lomb, 1976; Scargle, 1982; Ruf, 1999; Van Dongen et al., 1999), PWS is not a spec-
tral decomposition method. Depending on the data it can be used as an additional or
alternative technique to detect rhythms concealed in noise. The lower panel of Figure
1 shows the result for the noisy data from Figure 1b in Schimmel (2001). Contoured
are the PWS amplitudes as function of time of the first day of data and rhythm period.
For a better visibility, the contouring starts at amplitudes which equal 50% of the
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largest PWS amplitude. The two outstanding signals at about 1440min (= 24h) period
and 120–240min time, and 1440min period and 720min time, respectively, are due
to the bimodal rhythm. The first day of the noise free bimodal signal is shown in the
upper panel of Figure 1 for comparison. The contour plot of Figure 1 shows no other
concurrent signals. That is the features detected by Van Dongen et al. (2001) (see
their Table 1) are not proven as signals by the PWS analysis. In the Lomb-Scargle
analysis the bimodal rhythm is hidden in the noise inherent to the least squares fitting
of sine waves which is strongly influenced by the signal and noise amplitudes. PWS
is also sensitive to amplitudes, but it is not a variance estimation method and employs
an amplitude unbiased coherence measure to weight the results. Further it is not 
based on the decomposition in sine waves or other functions. Periods larger than 
30h have not been analyzed since the number of cycles within the time series 
should be at least in the order of 5 to obtain significant results.

Is the Noise Used Too Large?

The variance of the time series with signal & noise is about five times larger than the
variance of the data with the noise free signal. This might give the impression that
the noise amplitudes are about 5 times larger than the signal amplitudes. The noise
free signal (see top panel in Figure 1) has a very small variance since its amplitude
is fairly constant most of the time. As consequence, the variance of the noise is larger
than the variance of the signal, however, the maximum amplitudes are of the same
order. Indeed, the standard deviation of the noise is less than 60% of the maximum
bimodal rhythm amplitude and therefore not unrealistic.

Detection of Similar Rhythms in the Noise and 
Signal & Noise Data

Van Dongen et al. (2001) list in their Table 1 significant rhythms which have been
detected in the noise and signal & noise data. Common features in the noise and signal
& noise data are expected indeed. This is best understood when making the transi-
tion from the Lomb-Scargle power spectrum to the Fourier spectrum. For equally
spaced data, such as used in the example 1, the Lomb-Scargle periodogram provides
the same spectral information as the Fourier transform. The Fourier amplitude spec-
trum is proportional to the square root of the power spectral density of the peri-
odogram. A constant factor accounts, among others, for the normalization with the
total data variance. The Fourier transform is a linear system and as consequence the
spectrum of the signal & noise series is the same as the sum of the signal spectrum
and the noise spectrum. The summation is complex employing at each frequency
amplitudes and phases. Figure 2 shows the amplitude spectra of the noise, signal, and
signal & noise. The symbols in Figure 2 mark rhythms from Table 1 in Van Dongen
et al. (2001). It is obvious that the noise amplitude spectrum resembles the signal &
noise amplitude spectrum at frequencies where signal amplitudes decreased to very
small values. At these frequencies the signal has only a small influence in the sum-
mation of signal and noise.
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Are the Detected Features in the Noise Really Significant?

The noise used in my example comes from a tested random sequence (Gaussian white
noise) generator. Its white amplitude spectrum is shown in Figure 3a. White means
that the amplitude spectrum is flat. Random constructive interferences in the Fourier
summation cause the small individual peaks in the white spectra. They can not be
attributed to harmonic signals. Before adding the noise to the signal the very high
frequency components were suppressed using a zero phase low-pass filter. Figure 3b
shows the amplitude spectrum of the alternated series. This modification did not
change the noise at periods larger than about 2 hours, that is, the peaks in the ampli-
tude spectra of Figures 2 and 3 can not be considered to be harmonic significant
signals. The Lomb-Scargle periodograms for the noise of Figures 3a and 3b have
similar shapes at periods larger than 2h, however, the absolute power differs. This is
since the total data variance which is used in the normalization of the Lomb-Scargle
periodograms changed due to the suppression of the very high frequency components.
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Figure 1. The first day of the noise free bimodal rhythm used in the first example is shown
in the upper panel. The contour plot below is the result of a PWS analysis using the random
noise contaminated bimodal signal. The data is shown in Figure 1b in Schimmel (2001).



The statistics used by Van Dongen et al. (2001) are invalid for this data and misled
them in their conclusions. A glance at the noise or signal & noise spectrum should
have revealed that the noise is not white up to the Nyquist frequency. In general, fil-
tering, de-trending or tapering will alter the relative Lomb-Scargle power and can
change the number of degrees of freedom in the data. This must be considered in the
significance tests. The fact that the noise is not white at all frequencies can happen
in natural processes, thus is not unrealistic. The data characteristics need to be inves-
tigated before concluding from statistical significance tests.

Complementing Remarks about Outliers

Measurements which lead to a Gaussian distribution with heavier tails contain out-
liers. These can be due to point defects or local instabilities (nonstationarities). In my
example 2 they are unambiguously identified since there is no other noise or signal.
In the Gaussian model their occurrence probability is so small that least square (or
maximum likelihood) estimates are distorted to account for the heavy tails of the
nearly Gaussian shaped distribution. As consequence, conventional least-square based
techniques can give inefficient or seriously misleading estimates. This motivated to
the different techniques where small deviations from the underlying distributional
assumptions are less sensitive in the optimization. The so-called robust model esti-
mation or robust statistics deal with such methods (e.g., Huber, 1981; Chave et al.,
1987). Such techniques should be employed when the conventional least-square 
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Figure 2. Fourier amplitude spectra of the noise, signal, and signal & noise data of example
1. The amplitude scale is linear. The symbols indicate the features detected by Van Dongen 
et al. (2001) in the noise and signal & noise data, respectively.
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Figure 3. (a) Amplitude spectrum of the time series obtained with a tested random sequence
(white Gaussian noise) generator; (b) Amplitude spectrum of the noise used in example 1. The
high frequent noise components have been suppressed. Note that the spectrum is the same 
as in Figure 2 but the scaling is logarithmic and the Nyquist frequency is the largest frequency.

estimates are expected to break down. Minimizing the mean absolute deviation 
rather than the mean square deviation in the Lomb-Scargle approach is already a step
forward to a robust method. The examples and discussions presented here are aimed
to point to the limitations of the Lomb-Scargle approach. This should not be under-
stood as de-motivation. The Lomb-Scargle periodogram is a powerful tool but as with
any other method one should be aware about problems which can occur when inad-
equately used.
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