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Abstract

The Lomb-Scargle periodogram was introduced in astrophysics to detect sinusoidal
signals in noisy unevenly sampled time series. It proved to be a powerful tool in
time series analysis and has recently been adapted in biomedical sciences. Its use
is motivated by handling non-uniform data which is a common characteristic due
to the restricted and irregular observations of, for instance, free-living animals.
However, the observational data often contain fractions of non-Gaussian noise or
may consist of periodic signals with non-sinusoidal shapes. These properties can
make more difficult the interpretation of Lomb-Scargle periodograms and can lead
to misleading estimates. In this letter we illustrate these difficulties for noise-free
bimodal rhythms and sinusoidal signals with outliers. The examples are aimed to
emphasize limitations and to complement the recent discussion on Lomb-Scargle
periodograms.
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Introduction

The Lomb-Scargle periodogram analysis (Lomb 1976; Scargle, 1982) was introduced
in astronomy for non-uniform data and is based on the least-square fitting of sine
waves to the data. The obtained least-square spectrum provides the measurement of
power as function of frequency which explains best the overall variance of the data.
A detailed description of the method and its performance on biomedical data can
be found by Ruf (1999) and Van Dongen et al. (1999). An important aspect of the
measure is that if the data consists of pure Gaussian noise then the power follows
an exponential distribution which is used to test the significance of detected events
against random noise (Hernandez, 1999; Ruf, 1999; Van Dongen et al., 1999; among
others).
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Due to the least-square fitting of sine waves the Lomb-Scargle method effectively
detects sinusoidal rhythms in time series. The underlying assumption of the least-
square optimization is that the noise in the data is normal distributed. Deviations from
normal distributed noise or sinusoidal signal waveforms are common and can difficult
or even inhibit the detection of rhythms with the Lomb-Scargle method. In this letter
this is illustrated in two theoretical examples: a bimodal rhythm and a sinusoidal signal
with two discordant data points. The examples are hold simple for a better under-
standing of the principles which can apply in more complicated data. This letter is
aimed to complement the recent discussion about the Lomb-Scargle method and to
emphasize limitations of this method and the importance of additional analyses.

Non-Sinusoidal Rhythm: Bimodal Signal

Spectral methods such as the Lomb-Scargle analysis effectively decompose time
series in some way into sine waves to estimate the power at each frequency. Equidis-
tant data can be decomposed into a set of equally spaced frequency components which
ensure that the powers in the spectrum are independent due to orthogonality proper-
ties (e.g., Hernandez, 1999; Van Dongen et al., 1999). Although, for non-equally
spaced data the concept of orthogonal sine functions at independent frequencies
is not valid anymore, the idea of decomposition is approximately fulfilled under the
assumption of small spectral leakage. Inherent to the decomposition with sine waves
the power spectra of non-sinusoidal rhythms are generally more difficult to interpret.

A simple example with synthetic data is shown in Figure 1. The time series used
are 7 days long and evenly sampled at 8-min intervals with 1261 samples. The solid
trace (Figure la) contains a noise free bimodal 24-h rhythm. The corresponding
Lomb-Scargle periodogram is presented with the solid line in Figure 1c. The inde-
pendent frequencies (equation 10, Van Dongen et al., 1999) are marked by crosses.
It can be seen from the periodogram that the largest two powers are obtained for sine
waves with periods of 12h and 8h, respectively. The dashed trace in the Figure la is
the sum of the two dominant sine waves. It shows that the decomposition in the two
sine waves with periods of 8h and 12h already approximates the main characteris-
tics of the bimodal pattern with 24-h periodicity. Summing all sine waves yields the
solid line. Only the harmonics in the power spectrum indicate the non-sinusoidal
rhythm of 24 hours. However, in more complicated situations, for example in the pres-
ence of noise or other signals, such periodicity might be completely hidden in
the spectrum. This is exemplified with the time series of Figure 1b which contains
the same bimodal rhythm but contaminated with normally distributed noise. Its
periodogram is plotted with dashed line style in Figure 1c. It can be seen that the
24-h periodicity is now well hidden in the power spectrum.

Non-Gaussian Noise: Isolated Outliers

It is common that observational data contain a small fraction of strange measurements
or isolated outliers such as spikes caused by instrument failure or sporadical distur-
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Figure 1. (a) The solid trace contains a bimodal 24-h rhythm. The superimposed dashed time
series show the sum of two sine waves with periods of 8h and 12h which correspond to
the two strongest frequency components of a Fourier decomposition; (b) The time series is
the solid trace from (a) but contaminated with normal distributed noise; (c) Lomb-Scargle
periodograms for the noise free (a) and noisy trace (b). The crosses mark the independent
frequencies.

bances in the measuring environment. These strange isolated measurements usually
lead to Gaussian shaped distributions around the center but heavier tails, i.e., the out-
lying data points become more important. This increased importance is illustrated in
the following example. Figures 2a—c show the time series used. For simplicity they
contain only one single sine wave of 24-h periodicity and two discordant data points.
The time series are 7 days long, evenly sampled at 1h, 2h, and 3h 30 min intervals
and contain 169, 85, and 49 samples. Their Lomb-Scargle periodograms are shown
in Figure 2d. The independent frequencies are marked by crosses. The power spectra
of the traces with n = 85 and n = 49 samples are multiplied by 3 and 6, respectively,
to increase their visibility. The false alarm probabilities (p) of the highest power at
an independent frequency (equation 2, Ruf, 1999; equation 20, Van Dongen, 1999)
are l.e-12, 0.01, and 0.97. 1-p is the probability that the data contain a signal with
corresponding power. However, these values assume normal noise distribution and
are therefore not valid (especially for low n) in our example.

From Figure 2d (and the false alarm probabilities) it is obvious that the two spikes
have an increasing influence in time series with decreasing number of samples.
Although the data contain an evident sine wave no clear 24-h rhythm is detected in
the Lomb-Scargle periodogram for the third trace. This is because the squared ampli-
tudes of the spikes become dominant in the least-square fitting of sine waves. The so-
called misfit function is minimised by trying to fit the large amplitude outliers first.
As consequence, the highest power is found at frequencies which correspond to the
28-h separation of the discordant data points and at their higher harmonics. If one
increases the amplitudes of the spikes then also the other power spectra will hide
the 24-h periodicity.
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Figure 2. (a—c) The time series show an equally sampled sine wave with 24-h period and two
outlying samples. The time series differ in sampling interval and number n of samples. (d) The
corresponding Lomb-Scargle periodograms are presented with different line styles. The crosses
mark the independent frequencies.

Discussion and Conclusions

The examples illustrate that non-sinusoidal signals or outlying large amplitude fea-
tures can make more difficult the interpretation of Lomb-Scargle periodograms and
eventually lead to misleading conclusions. The fact that the frequencies in Figure 1c
(solid line) are harmonics of each other might help the interpretation but is generally
obscured by the presence of noise or other signals. Whether bimodal signals can be
detected depend on their shape and power spectrum. Alternative approaches to detect
especially non-sinusoidal rhythms can be based on signal coherence which commonly
adapt data summation (stacking) or cross-correlation techniques. Besides the period-
icity one can obtain the average waveform and occurrence time of each signal (e.g.,
Hoenen et al., 2001) which might be important to understand whether events are trig-
gered. The use of alternative methods which are not based on the resemblance of
sine waves has also been stressed by Van Someren et al. (1999).

The second example further shows that the Lomb-Scargle method can be sensi-
tive to discordant data points such as isolated large amplitude outliers caused by
instrument failures or disturbances in the measure environment. The underlying sta-
tistic for the significance test is not robust in the sense that it remains insensitive to
outliers. False alarm probabilities can take wrong values. For more complicated and
realistic data these phenomena might go undetected and one should be aware of pos-
sible biases in the results.

The Lomb-Scargle method remains a powerful tool, but it must be emphasized
to use additional analyses whenever difficulties are suspected due to violations which
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often are difficult to control. It might be useful to perform a parallel analysis on a
theoretical model which, as closely as possible, approximates the experiment. Varia-
tions of unknowns within the expected bounds can indicate the sensitivity of the
expected analysis due to outliers, employed sample distribution, and/or other factors.
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